Investigation 2 - Examining Growth Patterns

Problem 2.1 Killer Plant Strikes Lake Victoria

Name:	Date:	Block:
Essential Question: How do the starting value equation that represent an exponential function		
For example, students at Saco Middle School woof Problem 1.2. Some students wrote $r = 2^{n-1}$ are represents the number of rubas on square n . • Are both equations correct? Explain Yes, data using each equation Matches • What is the value of r in both equations.	1 1/2 (2°)	(2^n) $r=2^{n-1}$ (2^n) $2^{r-1}=2^n=1$ (2^n) $2^{r-1}=2^n=1$ (2^n) $2^{r-1}=2^n=1$ (2^n) $2^{r-1}=2^n=1$
• When $N=1$ • What is the y-intercept for the graph $1/2$; following $1/2$	of these equations? The pattern	$r = \frac{1}{2}$ when $n = 0$
• Do you think there is any value for n NO; There is only Killer Plant Strikes Lake Victoria 590ar	g I value of	
Water hyacinths, which experts say double in argiant Lake Victoria. The foreign plant has taken growing exponentially. — growth	rea every 5 to 15 days, are n over more than 769 squ	e expanding across Africa's
Equation: $y = 769(2^{\circ})$ Eq	Water	Hyacinth Growth
22,000 Mychinth	Days	Area Covered (sq. mi)
18,000	0	769
J 14000 12,000	1 70	1538
3 10,000 /	2 20	3076

30 40 50x 3 4 5

Doubling time (10day)

8000

2000

50 24,608
Don't use length in days,
Wistead 10 days = I unit
of time to double

6152

12,304

Investigation 2 - Examining Growth Patterns

Problem 2.1 Killer Plant Strikes Lake Victoria

Ghost Lake is a popular site for fishermen, campers, and boaters. In recent years, a certain water plant has been growing on the lake at an alarming rate. The surface area of Ghost Lake is 25,000,000 square feet. At present, the plant covers 1,000 square feet of the lake. The Department of Natural Resources estimates that the area covered by the water plan is doubling every month.

A1/B1. Create a table, equation, and graph for the scenario above.

A2. Explain what information the variables and numbers in your equation represent. $\sqrt{-100}$
a= area covered by plants 1000 - the amount covered
n= time in Months at the start.
2-growth factor
A3. Compare this equation to the equations in Investigation 1.
Now it is multiplied by 1000 instead of 1/2
because we start with 1000 squi at
(y-mtercept)
B2. How does this graph compare to the graphs of the exponential functions in Investigation 1?
This graph does not start at (0,1) or (1,1)
The graph starts with a Much higher number (1000)
C1. How much of the lake's surface will be covered at the end of a year by the plant?
$a = 10000(2^{12}) = 4,096,000$

between