iXL X. 3

Types of Problems

- Bacteria
- Population
- Radioactive Decay
- Exponential Growth/Decay
iXL X. 3

Solving problems involving bacteria, population, or radioactive decay.

MAKE A TABLE!

iXL X. 3

Time	Population, Bacteria, or Grams
0	(starting value)
(growth or decay time)	

iXL X. 3 Example

How much of a radioactive kind of argon will be left after 4 hours if you start with 80 grams and the half-life is 2 hours?
\square grams

Time	Grams
0	80 (starting value)
2 (half-life)	40
4	20

iXL X. 3

Solving problems involving exponential growth/decay.

DETERMINE IF IT IS
 INCREASING, DECREASING, OR ASKING FOR THE INTEREST!

iXL X. 3

Exponential Growth - Increasing
starting value $(1+\%)^{t}$

iXL X. 3 Example

Exponential Growth - Increasing

Lester has $\$ 10$ in a savings account. The interest rate is 10%, compounded annually.

To the nearest cent, how much will he have in 2 years?
\$ \qquad

$$
\begin{gathered}
\text { starting value }(1+\%)^{t} \\
10(1+.10)^{2} \\
10(1.10)^{2} \\
10(1+.10)^{2}
\end{gathered}
$$

$\$ 12.10$ total after 2 years.

iXL X. 3

 Exponential Decay - Decreasing

 Exponential Decay - Decreasing}
starting value (1-\%) ${ }^{t}$

iXL X. 3 Example

Exponential Decay - Decreasing

Whitney just drank a cup of coffee to help her stay awake. The coffee had 95 milligrams of caffeine in it. If her body processes 15% of the caffeine every hour, how much will be left in 3 hours?

If necessary, round your answer to the nearest tenth.
\square milligrams

> starting value (1-\%)t
$95(1-.15)^{3}$
$95(.85)^{3}$
58.3 milligrams

iXL X. 3
 Compound Interest - Interest ONLY

interest $=$ starting value $(1+\%)^{t}-$ starting value

iXL X. 3 Example

Compound Interest - Interest ONLY

Layla has $\$ 90$ in a savings account that earns 10% interest, compounded annually.
To the nearest cent, how much interest will she earn in 2 years?
\square
starting value $(1+\%)^{t}$
$90(1+.10)^{2}$
$90(1.10)^{2}$
$90(1+.10)^{2}$
$\$ 108.90$ total after 2 years. $\$ 18.90$ interest earned.

