Chapter 4 Study Guide: Factors and Fractions

4-1 Factors & Monomials

A number is divisible by:

- **2** if its ones digit is even (0, 2, 4, 6, 8)
- 3 if the sum of all the digits is divisible by 3
- 4 if the last two digits are a multiple of 4
- **5** if the ones digit is a 5 or a 0
- 6 if its ones digit is even **AND** the sum of all the digits is divisible by 3
- 9 if the sum of all the digits is a multiple of 9
- 10 if its ones digit is a 0

4-2 Powers & Exponents

The exponent tells you how many times to multiply the base by itself. SO 2^5 means multiply 2 times itself 5 times: $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$

EX: $(-4)^3 = (-4) \cdot (-4) \cdot (-4) = -64$ (Remember Negative Rules when evaluating)

4-3 Prime Factorization

Prime Factorization: when a number has been completely factored down

These prime numbers when multiplied will equal the original number

* NOTICE: There are many ways to do the problem, but you end with the same answer no matter how you solve the problem!

The **Prime Factorization** of 24 is 2 • 2 • 2 • 3 You can write the prime factorization of 24 in **exponential form**: $2^3 \cdot 3$

Greatest Common Factor

The Greatest Common Factor (GCF) of two whole numbers is the BIGGEST whole number that is a factor of **both** of the numbers.

LIST FACTORS:

List the factors of both numbers. The largest number in both lists is the GCF.

24: 1, 2, 3, 4, 6, 8, 12, 24 The greatest common factor is 6, because it is the largest factor they have in common have in common.

Multiplying and Dividing Monomials 4-6

Multiplying:

When multiplying powers with the same base, add their exponents. The base does not change.

EX:
$$2^4 \cdot 2^3 = (2 \cdot 2 \cdot 2 \cdot 2) \cdot (2 \cdot 2 \cdot 2)$$
 SO that is the same as 2^7

EX:
$$3^2 + 3^3 = (3 \cdot 3) + (3 \cdot 3 \cdot 3)$$
 SO that is NOT the same as 3^5

Dividing:

When dividing powers with the same base, subtract their exponents. The base does not change.

EX:
$$\frac{3^8}{3^3} = \frac{\cancel{3} \cdot \cancel{3} \cdot \cancel$$

4-7 Negative Exponents

A number to a negative exponent can be written as a positive exponent by placing the base and its exponent under 1 in a fraction.

EX:
$$5^{-8} = \frac{1}{5^8}$$
 $(-m)^{-7} = \frac{1}{(-m)^7}$

*Notice that the negative sign with the variable did not change. Only the negative exponent was changed to a positive exponent.

4-8 Scientific Notation

Scientific notation is a very large or small number expressed as a number greater than one but less than 10 which is then multiplied by a factor of 10. HINT: Count how many places you move the decimal point.

EX: $2,300,000 = 2.3 \times 10^6$ A very large number should have a **positive** exponent. EX: $0.000023 = 2.3 \times 10^{-5}$ A very small number should have a **negative** exponent.